2年前に統計検定準1級の勉強をしていた時、どこかで特性関数を用いた中心極限定理の証明を読んで、なるほど、と思ってノートに書き残した。
先週、そのノートを読んだら、理解できない部分があって、結構な時間悩んでしまった。
同じように悩む人はあまり居ないと思うが、自分用にメモしておく。
中心極限定理とは、期待値がμ、分散がσ2である任意の独立同一分布(i.i.d)に従うn個の確率変数Xiの平均が、その分布がどういう形状であっても、nを大きくすると近似的に期待値μ、分散σ2/nの正規分布に従うというものである。
中心極限定理
証明方法としては、特性関数の連続定理により、ある確率変数Xnの特性関数φn(t)がn→∞とすると全てのtでXの特性関数φ(t)一致するなら、XnはXに分布収束するというのを使う。
つまり、Xiの平均を平均μ、分散σ2/nで標準化したZnの特性関数φZn(t)が、標準正規分布の特性関数φZ(t)に一致することを示せば良い。
標準正規分布に従うZの特性関数は
である。最後は
であることを用いた。
本題の、Znの特性関数を計算する。
今回、この最後の変形が何故成り立つのかがわからず、調べまくってしまった。結局、九州大学の原先生の公開講座資料の第26頁の「最後のところでは,Xi の分布が同分布であることを用いました」を見て、Xiがi.i.dであることを思い出して解決した。
上の数式では敢えてX1と書いた(原先生の資料でもそのようになっている)が、筆者のノートでは(おそらくその元資料でも)この部分がXと書かれていたのが、筆者にとって混乱の元だった。
計算を続ける。マクローリン展開により、
なので、2乗の項までを展開して、
と変形できる。O(f(n))は「ランダウの記号」というもので、nを大きくした時に高々f(n)の定数倍となることを表す。3乗の項以降はnを大きくした時に0に収束するので、このように省略している。
なので、
となり、標準正規分布と特性関数が一致するので、Znは標準正規分布に収束する。
ついでに上述の原先生の資料で、特性関数がフーリエ変換と同じであることに初めて気付かされて驚いた。色々勉強になった。
コメント